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Abstract:
In this paper we solve the nonlinear wave-like Equations with variable coefficient by three Semi

numerical methods, varational iteration method (VIM), homotopy perturbation method (HPM) and
homotopy analysis method (HAM). The solution obtained by these methods are Compared with the solution
obtained by Adomian decomposition method (ADM) and the exact solution [8].

Keywords: ADM, VIM, HPM, HAM, Nonlinear wave-like Equations with variable coefficient.

1. Introduction:
Recently there are four famous methods for solving nonlinear problems, ADM, VIM, HPM and HAM.

In this section we will give short review for these methods. We start with the oldest one, it is ADM, which
discovered firstly by Adomian [2, 3] in the early eighties of the last century. The method was applied for a
wide class of nonlinear problems. The convergence of ADM discussed by Abbaoui and Cherruault [1].

VIM introduced by He [5] the method was impressive in applications, and it is easy in computations. Also
He introduced HPM and proved its Convergence [6], it was a practical method for solving nonlinear
problems and a wonderful application for homotopy ideas.

Finally, Liao [7] introduced the HAM, It is used successfully for solving many nonlinear problems, it is also
based on homotopy method, also Liao proved the convergence of HAM [7]. These methods are semi
numerical methods because they are produced series solution. In this paper, we apply VIM, HPM and HAM

for solving the nonlinear wave-like Equations with variable coefficient [8], in the following form,
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+H(X,t,u)+S(X,t)

with the initial conditions u(X,0)=a,(X) : u,(X,0)=a,(X).
Here X =(x,X%,,..,X%,), F; and G;  arenonlinear functionsof X, tandu. F,; and G,

are nonlinear functions of derivativesof x; and x;, whilst H and S are nonlinear functions. k ,

m, p are integers, and compared the result with the exact solution and ADM solution [8]. In the next three
sections we introduced the procedures for these methods.

To apply VIM, HPM and HAM for Nonlinear wave-like Equation with variable coefficient, we write
Equation (1) in the operator form as;

L(u(X,t))=N(u(X,t))+Ss(X,t) )
where
N(u) = Zn_:Flij(X t, u)ak—+m Fy (uXi U )+ Zn:Gli(X t, u)aa—):pGZi(uyq )+ H(X,t,u)

k m
oX axj i :

o%u
and L(u)= ra

We use Maple 13 software for computations.

2. VIM for nonlinear wave-like Equation:
In this section, a description of the VIM is given to handle the nonlinear problem (2). According to

He's VIM, we can construct a correction functional as follows,
t
Uy (X 1) = U, (X 1)+ [ A(s) (Lu, (X ,5)— NG, (X ,5)-S(X ,5)) ds 3)
0

where A is a general Lagrange multiplier which can be identified optimally via variational theory. Here

a,

is considered as a restricted variation which means §u, = 0. Therefore, we first determine the Lagrange

multiplier A that will be identified optimally via integration by parts. The successive approximation

u,(X,t) , n>0 of the solution u(X,t) will be readily obtained upon using the obtained Lagrange

multiplier and by using any selective function u,. The zeroth approximation u, may be selected any
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function that just satisfies, at least, the initial and boundary conditions. With 1 determined, then several

approximations u,(X,t) , n>0 follow immediately. Consequently, the exact solution may be obtained

as, u(X,t)=Limu,(X,t).
n—oo

3. HPM for nonlinear wave-like Equation:
In this section, we shall demonstrate the application of HPM to solve Equation (2). By the homotopy

perturbation method, we construct a homotopy as v(r,p) =Qx[0,1]] >R, Which satisfy the following
Equation:
H(v, p)=(-p)[LM) - Lue)]+ p[L(V) + N(W)]=0
or, H(v, p)=L(v) = L(Up) + p [L(up) + N(v)] =0 @)
Where pe[O,l] the embedding parameter and u, the initial approximation satisfying the boundary
conditions. Now from Equation (4) we have:
H(v,0)= L(v)-L(u,)=0 and H(v,1)=L(v)+N(v)=0.
In topology this is called deformation, also H(v,0)= L(v) - L(u,)and H(v,1)=L(v)+ N(v)are called

homotopic. By the homotopy perturbation theory, we can first use the embedding parameter p as a small

parameter and assume that nth solution of Equation (2) can be written as a power series in p as followed:

©

Setting p=1 we have the approximate solution of Equation (2) in following form:

u(X,t)= Limv=ivn (6)

p—1

4. HAM for nonlinear wave-like Equation:
In order to show the basic idea of HAM, we rewrite problem (2) in the following form,

n ak+m ( ) n ap
N(u(X,t)):un(X,t)—;Fﬁj(X A U)W Foi Uy » Uy —;Gm(x A U)a—xiszi(Uxi)

—H(X,t,u)-S(X,t)
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where N is a nonlinear operator. For simplicity, we ignore all boundary or initial conditions, which can be

treated in the similar way. By means of the HAM, we first construct the so called zeroth-order deformation
Equation (@1—qg)L[p(X ,t;q)—uy(X ,t)]=ghH(X,t)N[g(X ,t;q)] @)

where q is the embedding parameter, h = 0 is an auxiliary parameter, H(X,t) non zero auxiliary function,
L is an auxiliary linear operator, ¢(X,t;q) is an unknown function and u,(X,t) is an initial solution
obtaining from the initial conditions and the remaining term. It is obvious that when the embedding
parameter ~q=0 and q=1, Equation (7) becomes, @#(X,t;0)=u(X,0), (X, t;1)=u(X,t)
respectively. Thus as q increases from 0 to 1, thesolution #(X,t;q) varies from the initial guess

u,(X,t) to the solution u(X,t). Expanding (X ,t;q) in Taylor series with respect to q, one has

0 K )
¢(X t; q X t +Zuk x t where uk(X,t):%%k’t’q)
1 -

q=0

The convergence of the above series depends upon the auxiliary parameter h. If it is convergentat gq=1,

we have,  u(X,t)=u,(X,t)+> u(X,t) which must be one of the solutions of the original nonlinear
k=1

Equation, as proven by Liao [7].

Define the vectors T, (X ,t)={u,(X,t),u,(X,t), ... ,u,(X,t)}

Differentiating the zeroth-order deformation Equation k-times with respect to g and then dividing them by

k! and finally setting q =0 , we get the following kth-order deformation Equation:

Lu (X, =z u, (X D)= H(X )R (@, )

0, k<1
1, k>1

1 dN[g(X,t;9)]
(k-1! aq“

where R, (G )=

and g, :{

|q =0
It should be emphasized that uk(X ,t) for k>1 is governed by the linear kth-order deformation Equation

with linear boundary conditions that come from the original problem. Note that we define the linear

operator as,
L[¢(X ,t;q)]= w , with the property L[C(X)+C,(X)t]=0 , where C,,C, are integral
constants.

137



J.Thi-Qar Sci. Vol.3 (2) Feb./2012

Liao [7], proved that the ADM is a special case of HAM under the assumptions uO(X ,t): L'S(X,t) ,
H(X,t)=1 and h=-1.In HAM we have a great freedom to choose the initial guess uO(X ,t) and the

auxiliary function H(X,t) , also the auxiliary parameter h provides us with a simply way to adjust and

control convergence region and rate of solution series.

5. Test problems:
In this section, we apply VIM, HPM and HAM for two test problems [8], and compared the approximate

analytical solution obtained for the nonlinear wave-like problems by the three methods with solutions

obtained by ADM [8] and the exact solutions. We use six terms for the series solution for both problems.

5.1. problem 1.
Let us consider the 2-dimensional nonlinear wave-like Equation with variable coefficients
0? 0?
u, = u,u. )— Xyuu, |-u 8
tt axay(xx yy) 6X6y( y X y) ()

With the initial conditions u(x,y,0)=e” and u,(xy,0)=€"

The exact solution is  u(x, y,t)=e”(sint+cost)

5.1.1. VIM

We assume that the zeroth term is  uy(x,y,t)=e®" , also we set 1=s-t [2], so we have,

t
Ups (6 Y,) =0, (%, 1)+ [ (s=t)(Lu, (x,y,5)— NG, (x, y,8)-u(x, y,5)) ds
0

Hence we have the following solutions,

For n=0, ulzexy(Z—et+2t).

For n=1, u, _exy( —t? —%tj

For n=2, u,=e"%2-¢ +2t+it4 1 —t°.
12 60

For n=3, u,=e" eopp_tp e 1 )
3 360 2520

And so on.
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5.1.2. HPM

We apply HPM for problem (8) by using Equations (4 - 6), with u, =e*’(1+t). We get the following
solutions,

u, =e”(1+t),

u, = —exy(ltz +1t3j )
2 6

u, =exy(it4 +it5j,
24 120

U = —exy(it6 +it7j )
720 5040

Xy 1 8 1 9
.= + t
(40320 362880 j .

For n=6, we have the following approximate solution for Equation (8),

u=eW(1+t—%t2—%t3+it4+ Ly Ly Ly 1 e 1 9+...j

- + t° + t
24 120 720 5040 40320 362880

5.1.3. HAM

2 2
We define the nonlinear operator as, N(u) =u, —a—(uxxuyy)+ xoy

OX oy

To solve Equation (8) by means of the HAM, the initial approximation will be,

ou(x,y,0)
ot

(xyuxuy)+u.

Uy (X, y,t) =u(x, y,0) +t =eY(1+t) .

t=0

Using the above definition, and chose H(x, y,t) =1 we construct the zeroth-order deformation Equation,

(L—a)Llg(x, y,t;9)—us(x, y,t)] = gh N[g(x, y,t; q)]

Therefore, #(x, y,t;0)=uy(x, y,t)+ iuk(x, y,t)g¢
k=1
K .
where u, (x, y,t):iw
kl oq w0
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So,for q=1 wehave u(x,y,t)=uy(x,y,t)+> u.(x y.1t)
k=1

Now define the vectors @, (x, y,t)={u, (X, y,t),u, (X, y,t), ... ,u, (X, y,t)}.
Differentiating the zeroth-order deformation Equation k-times with respect to q and then dividing them by
k! and finally setting =0, we get the following kth-order deformation Equation:

LJu, (%, y,t)= 2 U, (%, v,t)]=hR,(G,,) , with the boundary conditions

u, (X, yO)_

at 1, k>1

0, k<1
:O where Zk={

and the solution of the kth-order deformation Equation becomes,

u, (%, y,t)=LhR (G, (% V,0))+ z U, (x, y,t)] for k=1,2,3,...

Now, we successively obtain,

1., 1
u,(x, y,t)=he”| =t* + =t?
(X y.t) (6 > )
u, (X, y,t)= hexy[%tz +%t3 + h(%tz BTN RY +it5D

6 24 120

6 24 120

+ hz(lt2 P C R S S +it7]
2 6 12 60 720 5040

u (X, y,t):hexy l1:2_|.£t3_|.2h £t2+lt3 +it4 +it5
’ 2 6 2

u,(x,y,t)=he” 1t2 +5t3 +3h(£t2 +1t3 +it4 +it5j
2 6 2 6 24 120

+3h2(£t2 FETCINE ST I I +Lt7j
2 6 12 60 720 5040

+h3(1t2+£t3+1t4+it5+ Lo, 1oyt py 1t tgj
2 6 8 40 240 1680 40320 362880

The series solution for n=6 s,
U= exy(1+t +%h(5+5h3 +10h? +10h + h*)t? +%h(5+5h3 +10h? +10h + h")t®
+ih2(20h+4h3 +10+15h%)t* +)
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As pointed by Liao [7], the auxiliary parameter h can be employed to adjust the convergence region of

the homotopy analysis solution. To investigate the influence of h on the solution series, we plot the so

called h-curve of u,(0.5,0.5,0) obtained from the six terms of HAM approximation solution as showed in

Figure (1). According to this h-curve, it is easy to discover the valid region of h which corresponds to the
line segment nearly parallel to the horizontal axis. It is clear that the series of solutions for this case is
convergent when —1.4 <h <—-0.6. For this we chose h=-0.9.

The Maximum error for x=y=0.5 showed in Figures (3-6), also tables (1-4) shows the absolute errors

when x,y and t vary from0.1t00.9.

5.2. problem 2.

Consider the following one dimensional nonlinear wave-like Equation
uﬁzxz{g(uxuxx)—(uxx)z}—u, 0<x<1l , t>0 9
X

with the initial conditions u(x,0)=0 and u,(x,0)=x* and boundary conditions  u(0,t)=0 and

u(L,t)=sint. The exact solution is  u(x,t)=x?sint.

5.2.1. VIM

We start the iterations with uy(x,y,t)=x*t and A=s—t. The procedure will continue with the

following iterations,
t

Una (%, ¥,8) = U, (% Y, t) + [ (s=t)(Lu, (x,¥,5)= NT, (x, y,5)~u(x,y,s)) ds
0

We obtain the following solutions for six terms.

For n=1, ul:xz[t—%te’].

For n=2, u,=%° t-tps L)
6 120

For n=3, u, = x° -l e 1)
6 120 5040

1y 1, 1

For n=4, u4:x2t—£t3+ —~ + t
6 120 5040 362880

9). And so on.
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5.2.2. HPM

By applying HPM and using Equations (4 - 6), we have the following solutions,

u, = X%,
ul——lxzts,
6
u2=ix2 5
120
3=—LX2 7,
5040
L x*t?

u, =
‘362880

For n=6, the approximate solution for Equation (9), will be as followed,

u:ﬁ@—lﬁ+ L 1 g, 1 ﬁ+~)
6 120 5040 362880

52.3. HAM
Define the nonlinear operator as N(u) =u, — x{%(uxum)—(um)ﬂ +U.

The initial approximation will be,

Uy (X,t) = u(x,0) +t% =xt .

t=0

Now, chose H(x,t) =1, then the zeroth-order deformation Equation is,
(L-a)L[p(xt;0)-us(x,t)]= ah N[g(x,t; q)]

k .
u (x,t)g* where u (x,t)= imktq)

£ k! oq |,

s

So, #(x,t;q)=u,(x,t)+

In the similar way we have the following,
L[Uk (X’ t)_ Xk uk—l(x' t)] =hR, (Uk—l)’

with the boundary conditions  u, (x,0) = %(txt) =0
t=0
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e
The solution of the kth-order deformation Equation becomes,

u (x,t)=L*[hR (G, )+ z U, (xt)] for k=1,2,3,...

Then we have the following solutions,

ul(x,t)=%ht3x2
uz(x,t):%h X2 2 + h(t?’ +2iot5j

Us(x,t)=%h X2+ Zh(tg’ +%t5 +h? (tg’ +%t5 +$t7n

iﬂ +3h® 1t~°'+it5+ 1 t"+ 1 t°
840 3 20 840 60480

U4(X,t)=%hx2 t3+3h(t3+2—10t5 +3h2(t3+%t5+

The following solution for n=6 will be obtained,

u=xz(t+(§h+§h2+§h3+§h4+5h5)t3+(1h3+ih2+1h4+ih5)t5
6 '3 3" "6 "6 6 ‘12" "8 30

+( Ly Lo, 1 h5)t7+~--j
504 336 840

To find a proper value of h the h-curves of  u,(0.5,0) given by the six terms of HAM approximation is

drawn in Figure (2) that’s shows the valid region of h is the interval (-1.5-0.5), so we chose

h=-0.9. Tables (5 - 8) shows the absolute errors with six terms for x and t vary from 0.1 to 0.9, also the

Maximum error for x=0.5 showed in Figures (7 - 10).

Table (1): Absolute errors with six terms for Problem (1) by ADM

tlx.y 0.1 03 05 0.7
01 0 1.00000<10° | 2.00000x10° 0
03 | 0 0 0 0
05 | 2.00000x10° | 1.00000x10° | 2.00000x10% | 2.00000x10°
0.7 | 1.00000<10° | 1.00000x10° | 1.00000x10° | 2.00000x10°
0.9 | 100000x10° | 2.00000<10% | 2.00000x10° | 0
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Table (2): Absolute errors with six terms for Problem (1) by VIM

tix.y 0.1 0.3 0.5 0.7
0.1 0 0 0 -1.00000:10°
0.3 | 1.00000x10° | 1.00000x10° | 1.00000x10° | 1.00000x10%
0.5 0 -1.00000x10° | -1.0000010° | -1.00000x10°
0.7 0 -1.00000x10° | -2.00000x10° | -2.00000x10°
09 | 1.00000x10% | 1.00000<10° | 1.00000<10° | 2.00000x10°°

Table (3): Absolute errors with six

terms for Problem (1) by

tix,y 0.1 03 0.5 0.7
0.1 0 0 0 0
0.3 0 0 0 0
0.5 0 0 0 0
0.7 0 0 0 0
0.9 | 1.00000x10° | 2.00000x10° | 2.00000x10° | 2.00000x10°

Table (4): Absolute errors with six

terms for Problem (1) by

tixy 0.1 0.3 0.5 0.7

0.1 | 5.00000x10° | 5.50000x10° | 6.40000x10° | 8.20000x10°
03 | 3.42000<107 | 3.71000x107 | 4.35000x107 | 5.53000x107
0.5 | 3.35000<107 | 3.63000x10°" | 4.27000x10" | 5.42000x107
0.7 | 8.16000<107 | 8.84000x107" | 1.03700x10° | 1.31900x10
0.9 | 3.39200x<10° | 3.67500x10¢ | 4.31200x10° | 5.48100x10°

Feb./2012
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Table (5): Absolute errors with six terms for Problem (2) by ADM

Feb./2012

t/x 0.1 0.3 0.5 0.7

0.1 | 1.00000x10*3 0 0 1.00000<10*!
0.3 0 1.00000x10*! | 2.00000x<10! | 1.00000x10°°
0.5 | 1.00000x10 0 1.00000x10*° | 1.00000x10°°
0.7 0 1.00000x10- 0 0

0.9 | 1.00000x10*? 0 0 1.00000x10-1°

Table (6): Absolute errors with six terms for Problem (2) by VIM

tx 0.1 0.3 0.5 0.7
0.1 0 0 0 0
03 0 0 10000010 0
0.5 0 0 -1.00000=10-1° 0
0.7 0 0 0 0
0.9 0 0 0 0

Table (7): Absolute errors with six terms for Problem (2) by HPM

tlx 0.1 0.3 0.5 0.7
0.1 0 0 0 0
0.3 0 0 1.00000=10-! 0
0.5 0 0 -1.00000x10-10 0
0.7 0 0 0 0
0.9 0 0 0 0

Table (8): Absolute errors with six terms for Problem (2) by HAM

tlx 0.1 03 0.3 0.7

0.1 | 1.63000<10™ | 1470001010 | 4.10000x10° | 7.90000x10-1
03 | 3.60000x101° | 3.24000x10° | 8.99000x10° | 1.75000x10°
0.5 | 1.01400x10° | 9.13000x10° | 2.54000x10° | 4.98000x10°
0.7 | 5.84000x101° | 5.26000%10° | 1.45000x10° | 2.87000x10°
0.9 | 3.19800x10° | 2.87900x10° | 8.00000x10° | 1.56700x107
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Figure (1): The h-curve of u,(0.5,0.5,0)
based on the six terms of HAM.
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Figure (3): Errors between the solutions
obtained using HPM with six terms and
exact solutionat x, y=0.5
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Figure (2): The h-curve of u,(0.5,0)
based on the six terms of HAM.
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Figure (4): Errors between the solutions
obtained using HAM with six terms and
exact solutionat x, y=0.5
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Figure (5): Errors between the solutions
obtained using ADM with six terms and
exact solutionat x=0.5

0 o2 oo . 3
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Figure (7): Errors between the solutions
obtained using HPM with six terms and
exact solutionat x=0.5

6. Conclusions:
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Figure (6): Errors between the solution
obtained using VIM with six terms and
exact solution at x=0.5

il - "."’-T . .\
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Figure (8): Errors between the solutions
obtained using HAM with six terms and
exact solution at x=0.5

In this paper, we presented the application of the VIM, HPM and HAM in solving nonlinear wave-like
Equations with variable coefficients. These methods was tested on two different examples where the
numerical solutions clearly demonstrated that the VIM, HPM and HAM produces very accurate results

which are very close to the exact solutions, also from tables (1-8) and figures (1-8) we conclude that HPM is
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more accurate in applications than VIM, HAM and ADM. But HPM and VIM are easer in applications
since ADM and HAM need the integrations in every iterations and the number of integrations are equal to
the order of Equations, while The VIM and HPM deforms a difficult problem in to a simple problem which

can be easily solved, also the VIM depends on the proper selection of the initial approximations uO(X ,t).

Thus, these methods are capable of providing fast solutions that are highly accurate and reliable in solving
this type of Equations.
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