Clinical and Biochemical Insights into Biofilm-Forming Bacteria Isolated from Dialysis Patients.

Authors

  • Noor S. Kadhem University of Thi-Qar, College of Science, Department of Biology
  • Dr. Ahmed Khassaf Atya University of Thi-Qar, College of Science, Department of Biology

DOI:

https://doi.org/10.32792/utq/utjsci/v12i1.1359

Keywords:

Biofilms, Dialysis Patients, MDR, XDR, Antibiotics Resistant, Iraq

Abstract

Bacterial biofilms are difficult to eradicate and cause a significant number of complications in the management of dialysis patients resulting in more frequent infections and worse morbidity. The purpose of the present research paper is to study the characteristics of biofilm producing bacteria sampled from dialysis patients and their relationships with clinical and biochemical features. Urine cultures from 121 participants were used and yielded a total of 23 bacterial isolates. From the 23 samples, E. coli (n=15) had the highest frequency of moderate biofilm formation with 46.67% of the isolates belonged to this category while the rest of the isolates were equally distributed between the weak and strong biofilm producers (26.67% each). Enterobacter cloacae complex (n=3) formed moderate biofilms at a higher frequency (66.67%). On the other hand, Klebsiella pneumoniae (n=5) showed relatively weak biofilm formation, 60% had weak biofilm formation while 40% had moderate biofilm formation. We then analysed the antimicrobial resistance profiles of the isolates to determine the relationship between biofilm formation and resistance pattern. All the weak biofilm producers were multidrug-resistant while the resistance pattern of the moderate biofilm producers was also rather homogeneous; 72.7% of the isolates were multidrug-resistant and 27.3% were extensively drug-resistant.  However, the resistance pattern of the strong biofilm producers was rather different

References

L. T. Oliveira, L. G. Lopes, S. B. Ramos, C. H. G. Martins, M. C. Jamur, and R. H. Pires, ‘Fungal biofilms in the hemodialysis environment’, Elsevier BV, vol. 123, pp. 206–212, Jul. 2018, doi: 10.1016/j.micpath.2018.07.018.

A. Zhao, J. Sun, and Y. Liu, ‘Understanding bacterial biofilms: From definition to treatment strategies’, Frontiers Media, vol. 13. Apr. 2023. doi: 10.3389/fcimb.2023.1137947.

I. W. Apata et al., ‘Opportunities to Improve Antibiotic Prescribing in Outpatient Hemodialysis Facilities: A Report From the American Society of Nephrology and Centers for Disease Control and Prevention Antibiotic Stewardship White Paper Writing Group’, Elsevier BV, vol. 77, no. 5, pp. 757–768, Oct. 2020, doi: 10.1053/j.ajkd.2020.08.011.

H. Kanamori, D. J. Weber, J. E. Flythe, and W. A. Rutala, ‘Waterborne Outbreaks in Hemodialysis Patients and Infection Prevention’, Oxford University Press, vol. 9, no. 3, Feb. 2022, doi: 10.1093/ofid/ofac058.

B. Wang, J. Xu, P. Fu, and L. Ma, ‘MicroRNAs in septic acute kidney injury’, BioMed Central, vol. 11, Jan. 2023, doi: 10.1093/burnst/tkad008.

J. Himmelfarb, R. Vanholder, R. Mehrotra, and M. Tonelli, ‘The current and future landscape of dialysis’, Nature Portfolio, vol. 16, no. 10. pp. 573–585, Jul. 2020. doi: 10.1038/s41581-020-0315-4.

J.-P. Cuevas et al., ‘Characterization of the Bacterial Biofilm Communities Present in Reverse-Osmosis Water Systems for Haemodialysis’, Multidisciplinary Digital Publishing Institute, vol. 8, no. 9, pp. 1418–1418, Sep. 2020, doi: 10.3390/microorganisms8091418.

C. J. L. Murray et al., ‘Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis’, Elsevier BV, vol. 399, no. 10325. pp. 629–655, Jan. 2022. doi: 10.1016/s0140-6736(21)02724-0.

J. Sampaio et al., ‘Deciphering the Contribution of Biofilm to the Pathogenesis of Peritoneal Dialysis Infections: Characterization and Microbial Behaviour on Dialysis Fluids’, Public Library of Science, vol. 11, no. 6, Jun. 2016, doi: 10.1371/journal.pone.0157870.

A. K. A. Atya, K. Drider-Hadiouche, A. Vachée, and D. Drider, ‘Potentialization of β-lactams with colistin: in case of extended spectrum β-lactamase producing Escherichia coli strains isolated from children with urinary infections’, Elsevier BV, vol. 167, no. 3, pp. 215–221, Dec. 2015, doi: 10.1016/j.resmic.2015.12.002.

M. K. Dasgupta and M. Larabie, ‘Biofilms in Peritoneal Dialysis’, SAGE Publishing, vol. 21, pp. 213–217, Dec. 2001, doi: 10.1177/089686080102103s37.

S. Berman, E. W. Johnson, C. H. Nakatsu, M. Alkan, R. Chen, and J. W. LeDuc, ‘Burden of Infection in Patients with End-Stage Renal Disease Requiring Long-Term Dialysis’, Oxford University Press, vol. 39, no. 12, pp. 1747–1753, Dec. 2004, doi: 10.1086/424516.

R. N. Foley, ‘Infectious Complications in Chronic Dialysis Patients’, SAGE Publishing, vol. 28, pp. 167–171, Jun. 2008, doi: 10.1177/089686080802803s31.

A. K. Atya, M. H. Alyasiri, R. Altamimy, and S. Ethaib, ‘Assessment of Airborne Fungi in Indoor Environment for Biological Lab Rooms’, J Pure Appl Microbiol, vol. 13, no. 4, pp. 2281–2286, Dec. 2019, doi: 10.22207/JPAM.13.4.42.

A. K. A. Atya et al., ‘Anti-MRSA Activities of Enterocins DD28 and DD93 and Evidences on Their Role in the Inhibition of Biofilm Formation’, Frontiers Media, vol. 7, no. undefined, May 2016, doi: 10.3389/fmicb.2016.00817.

T. M. Hooton et al., ‘Diagnosis, Prevention, and Treatment of Catheter-Associated Urinary Tract Infection in Adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America’, Clinical Infectious Diseases, vol. 50, no. 5, pp. 625–663, Mar. 2010, doi: 10.1086/650482.

A. Tripathi, K. Sathua, V. Pachauri, and S. J. S. Flora, ‘Collection, storage, and transportation of samples for offsite analysis’, in Handbook on Biological Warfare Preparedness, Elsevier, 2020, pp. 133–149. doi: 10.1016/B978-0-12-812026-2.00007-4.

G. A. O’Toole, ‘Microtiter Dish Biofilm Formation Assay’, MyJOVE, vol. undefined, no. 47, Jan. 2011, doi: 10.3791/2437.

B. Foxman, ‘The epidemiology of urinary tract infection’, Nat Rev Urol, vol. 7, no. 12, pp. 653–660, Dec. 2010, doi: 10.1038/nrurol.2010.190.

A. L. Flores-Mireles, J. N. Walker, M. Caparon, and S. J. Hultgren, ‘Urinary tract infections: epidemiology, mechanisms of infection and treatment options’, Nat Rev Microbiol, vol. 13, no. 5, pp. 269–284, May 2015, doi: 10.1038/nrmicro3432.

E. Tacconelli et al., ‘Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis’, The Lancet Infectious Diseases, vol. 18, no. 3, pp. 318–327, Mar. 2018, doi: 10.1016/S1473-3099(17)30753-3.

S. Parikh, J. Patel, R. Patel, and R. Patel, ‘Editorial: Novel approaches in the prevention of bacterial biofilm formation’, Frontiers Media, vol. 13. Jul. 2023. doi: 10.3389/fcimb.2023.1212386.

L. K. Vestby, T. Grønseth, R. Simm, and L. L. Nesse, ‘Bacterial Biofilm and its Role in the Pathogenesis of Disease’, Multidisciplinary Digital Publishing Institute, vol. 9, no. 2. pp. 59–59, Feb. 2020. doi: 10.3390/antibiotics9020059.

M. K. Dasgupta, K. Kowalewaska-Grochowska, and J. W. Costerton, ‘Biofilm and Peritonitis in Peritoneal Dialysis’, SAGE Publishing, vol. 13, pp. 322–326, Jan. 1993, doi: 10.1177/089686089301302s79.

M. Jihad and M. Salih, ‘Microbial Detection and Antibiotic Susceptibility patterns of Clinical Isolates from Women With Urinary Tract Infection in AL-Nasiriyah City/Iraq’, UTJsci, vol. 11, no. 1, pp. 45–54, Jun. 2024, doi: 10.32792/utq/utjsci/v11i1.1168.

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, ‘Bacterial biofilms: from the Natural environment to infectious diseases’, Nat Rev Microbiol, vol. 2, no. 2, pp. 95–108, Feb. 2004, doi: 10.1038/nrmicro821.

R. M. Donlan and J. W. Costerton, ‘Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms’, Clin Microbiol Rev, vol. 15, no. 2, pp. 167–193, Apr. 2002, doi: 10.1128/CMR.15.2.167-193.2002.

P. S. Stewart and J. William Costerton, ‘Antibiotic resistance of bacteria in biofilms’, The Lancet, vol. 358, no. 9276, pp. 135–138, Jul. 2001, doi: 10.1016/S0140-6736(01)05321-1.

A. G. e Silva, M. Grosso, C. M. Takiya, and L. R. Andrade, ‘Patient’s cells colonize the biofilm of Tenckhoff catheters used in peritoneal dialysis’, Taylor & Francis, vol. 27, no. 6, pp. 603–608, Jun. 2011, doi: 10.1080/08927014.2011.591488.

J. Azeredo, P. García, and Z. Drulis-Kawa, ‘Targeting biofilms using phages and their enzymes’, Current Opinion in Biotechnology, vol. 68, pp. 251–261, Apr. 2021, doi: 10.1016/j.copbio.2021.02.002.

D. Lebeaux, A. Chauhan, O. Rendueles, and C. Beloin, ‘From in vitro to in vivo Models of Bacterial Biofilm-Related Infections’, Pathogens, vol. 2, no. 2, pp. 288–356, May 2013, doi: 10.3390/pathogens2020288.

G. Cannalire, S. Pilloni, S. Esposito, G. Biasucci, A. D. Franco, and M. E. Street, ‘Alkaline phosphatase in clinical practice in childhood: Focus on rickets’, Frontiers Media, vol. 14. Feb. 2023. doi: 10.3389/fendo.2023.1111445.

X. Cheng and C. Zhao, ‘The correlation between serum levels of alkaline phosphatase and bone mineral density in adults aged 20 to 59 years’, Wolters Kluwer, vol. 102, no. 32, Aug. 2023, doi: 10.1097/md.0000000000034755.

C. Liu, D. Sun, J. Zhu, J. Liu, and W. Liu, ‘The Regulation of Bacterial Biofilm Formation by cAMP-CRP: A Mini-Review’, Frontiers Media, vol. 11. May 2020. doi: 10.3389/fmicb.2020.00802.

B. Branger et al., ‘Using Detachment‐Promoting Agents for the Prevention of Chronic Peritoneal Dialysis‐Associated Infections’, Wiley, vol. 32, no. 12, pp. 918–924, Dec. 2008, doi: 10.1111/j.1525-1594.2008.00684.x.

Downloads

Published

2025-06-24

Issue

Section

Articles

Categories

How to Cite

Kadhem, N., & Atya, A. . (2025). Clinical and Biochemical Insights into Biofilm-Forming Bacteria Isolated from Dialysis Patients. University of Thi-Qar Journal of Science, 12(1), 148-157. https://doi.org/10.32792/utq/utjsci/v12i1.1359