Effect of Dapagliflozin on Oxidative Stress in Patients with Heart Failure
DOI:
https://doi.org/10.32792/utq/utjsci/v12i2.1389Keywords:
Dapagliflozin, Osidative StreesAbstract
Dapagliflozin has emerged as a promising therapeutic agent for reducing cardiovascular risk in patients with type 2 diabetes mellitus and concomitant heart failure (HF).The present study aims to investigate the impacts of dapagliflozin on some oxidative stress markers, including nitric oxide (NO) , fasting blood glucose (FBG), superoxide dismutase (SOD), and catalase (CAT), in patients with HF in comparison with healthy controls.
The study included 150 participants : 100 patients who had type 2 diabetes mellitus (T2DM) and HF, and 50 normal subjects (controls). Based on age, the patients were divided into two groups (40-70 years). Group A received both Lasix and Dapagliflozin , whereas Group B received Lasix only. According to the data, serum FBG and GAL-3 concentrations in groups A and B were significantily higher than those in the control (p≤ 0.05 ). In comparison to the controls, groups A and B showed a significant decrease in serum CAT, SOD, and NO concentrations( p≤ 0.05). There was no been any significant difference in serum concentration of Gal3, FBG, CAT, SOD, and NO between groups A and B upon admission, according to the results. Significant differences were observed in the concentrations of serum Gal3, FBG, CAT, SOD, and NO between groups A and B at 7 days. Additionally, patients in groups A and B had significantly lower serum Gal3 and FBG concentrations than on the day of baseline, and patients in groups Aand B had significantly higher serum CAT, SOD
Received: 2025-05-05
Revised:2025-06-28
Accepted: 2025-07-10
References
[1]B. Bozkurt, A. J. Coats, H. Tsutsui, M. Abdelhamid, S. Adamopoulos, N. Albert, S. D. Anker, J. Atherton, M. Böhm, and J. Butler, “Universal definition and classification of heart failure: a report of the heart failure society of America, heart failure association of the European society of cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure,” Journal of cardiac failure, vol. 27, no. 4, pp. 387-413, 2021.
[2]A. Groenewegen, F. H. Rutten, A. Mosterd, and A. W. Hoes, “Epidemiology of heart failure,” European journal of heart failure, vol. 22, no. 8, pp. 1342-1356, 2020.
[3]D. Tomasoni, M. Adamo, C. M. Lombardi, and M. Metra, “Highlights in heart failure,” ESC heart failure, vol. 6, no. 6, pp. 1105-1127, 2019.
[4]J. C. H. Santiago, J. M. Delgado, M. C. Blanco, J. B. L. Saez, and P. Gomez-Fernandez, “Effect of dapagliflozin on arterial stiffness in patients with type 2 diabetes mellitus,” Medicina Clínica (English Edition), vol. 154, no. 5, pp. 171-174, 2020.
[5]A. E. Ali, M. S. Mazroua, M. ElSaban, N. Najam, A. S. Kothari, T. Mansoor, T. Amal, J. Lee, and R. Kashyap, “Effect of dapagliflozin in patients with heart failure: a systematic review and meta-analysis,” Global Heart, vol. 18, no. 1, pp. 45, 2023.
[6]P.-L. Hsieh, P.-M. Chu, H.-C. Cheng, Y.-T. Huang, W.-C. Chou, K.-L. Tsai, and S.-H. Chan, “Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-mediated oxidative stress, cardiac remodeling, and inflammation,” International journal of molecular sciences, vol. 23, no. 17, pp. 10146, 2022.
[7]Y. Zhou, S. Tai, N. Zhang, L. Fu, and Y. Wang, “Dapagliflozin prevents oxidative stress-induced endothelial dysfunction via sirtuin 1 activation,” Biomedicine & Pharmacotherapy, vol. 165, pp. 115213, 2023.
[8]M. Vlachou, E. Geraniou, and A. Siamidi, “Modified release of furosemide from Eudragits® and poly (ethylene oxide)-based matrices and dry-coated tablets,” Acta Pharmaceutica, vol. 70, no. 1, pp. 49-61, 2020.
[9]B. L. S. Amaral, T. P. dos Santos, R. Mendes, P. F. P. Andrade, A. Rocha-Gomes, V. J. Lages, K. B. Costa, D. A. Freitas, B. F. Mendes, and G. E. B. A. de Melo, “Furosemide Reduces TNF Levels and Increases Antioxidant Activity in Animal Models of Nephrotic Syndrome,” Journal of Advances in Medicine and Medical Research, vol. 35, no. 21, pp. 66-79, 2023.
[10]A. van der Pol, W. H. van Gilst, A. A. Voors, and P. van der Meer, “Treating oxidative stress in heart failure: past, present and future,” European Journal of Heart Failure, vol. 21, no. 4, pp. 425-435, 2019.
[11]N. W. Tietz, "Clinical guide to laboratory tests," Clinical guide to laboratory tests, pp. 1096-1096, 1995.
[12]A. Dervisevic, N. Babic, J. Huskic, S. Sokolovic, E. Nakas-Icindic, and L. Causevic, “Concentration of nitric oxide in saliva of patients with rheumatoid arthritis,” Int J Collab Res Intern Med Public Health, vol. 4, no. 7, pp. 1442-1451, 2012.
[13]E. T. Kato, M. G. Silverman, O. Mosenzon, T. A. Zelniker, A. Cahn, R. H. Furtado, J. Kuder, S. A. Murphy, D. L. Bhatt, and L. A. Leiter, “Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus,” Circulation, vol. 139, no. 22, pp. 2528-2536, 2019.
[14]S. J. McGurnaghan, L. Brierley, T. M. Caparrotta, P. M. McKeigue, L. A. Blackbourn, S. H. Wild, G. P. Leese, R. J. McCrimmon, J. A. McKnight, and E. R. Pearson, “The effect of dapagliflozin on glycaemic control and other cardiovascular disease risk factors in type 2 diabetes mellitus: a real-world observational study,” Diabetologia, vol. 62, pp. 621-632, 2019.
[15]T. A. Zelniker, M. P. Bonaca, R. H. Furtado, O. Mosenzon, J. F. Kuder, S. A. Murphy, D. L. Bhatt, L. A. Leiter, D. K. McGuire, and J. P. Wilding, “Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus: insights from the DECLARE-TIMI 58 trial,” Circulation, vol. 141, no. 15, pp. 1227-1234, 2020.
[16]B. Zaborska, M. Sikora-Frąc, K. Smarż, E. Pilichowska-Paszkiet, A. Budaj, D. Sitkiewicz, and G. Sygitowicz, “The role of galectin-3 in heart failure—the diagnostic, prognostic and therapeutic potential—where do we stand?,” International journal of molecular sciences, vol. 24, no. 17, pp. 13111, 2023.
[17]I. M. Seropian, P. Cassaglia, V. Miksztowicz, and G. E. González, “Unraveling the role of galectin-3 in cardiac pathology and physiology,” Frontiers in Physiology, vol. 14, pp. 1304735, 2023.
[18]B. Yu, F. Ichinose, D. B. Bloch, and W. M. Zapol, “Inhaled nitric oxide,” British journal of pharmacology, vol. 176, no. 2, pp. 246-255, 2019.
[19]S. Khemais‐Benkhiat, E. Belcastro, N. Idris‐Khodja, S. H. Park, L. Amoura, M. Abbas, C. Auger, L. Kessler, E. Mayoux, and F. Toti, “Angiotensin II‐induced redox‐sensitive SGLT1 and 2 expression promotes high glucose‐induced endothelial cell senescence,” Journal of cellular and molecular medicine, vol. 24, no. 3, pp. 2109-2122, 2020.
[20]S. Tai, Y. Zhou, L. Fu, H. Ding, Y. Zhou, Z. Yin, R. Yang, Z. Liu, and S. Zhou, “Dapagliflozin impedes endothelial cell senescence by activating the SIRT1 signaling pathway in type 2 diabetes,” Heliyon, vol. 9, no. 8, 2023.
[21]D. Kolijn, S. Pabel, Y. Tian, M. Lódi, M. Herwig, A. Carrizzo, S. Zhazykbayeva, Á. Kovács, G. Á. Fülöp, and I. Falcão-Pires, “Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation,” Cardiovascular research, vol. 117, no. 2, pp. 495-507, 2021.
[22]R. B. Singh, J. Fedacko, D. Pella, G. Fatima, G. Elkilany, M. Moshiri, K. Hristova, P. Jakabcin, and N. Vaňova, “High exogenous antioxidant, restorative treatment (heart) for prevention of the six stages of heart failure: the heart diet,” Antioxidants, vol. 11, no. 8, pp. 1464, 2022.
[23]M. Zheng, Y. Liu, G. Zhang, Z. Yang, W. Xu, and Q. Chen, “The applications and mechanisms of superoxide dismutase in medicine, food, and cosmetics,” Antioxidants, vol. 12, no. 9, pp. 1675, 2023.
[24]Y.-j. Xing, B.-h. Liu, S.-j. Wan, Y. Cheng, S.-m. Zhou, Y. Sun, X.-m. Yao, Q. Hua, X.-j. Meng, and J.-h. Cheng, “A SGLT2 inhibitor dapagliflozin alleviates diabetic cardiomyopathy by suppressing high glucose-induced oxidative stress in vivo and in vitro,” Frontiers in pharmacology, vol. 12, pp. 708177, 2021.
[25]Z. Dogan, and H. Uzun, “Effect of dapagliflozin on oxidative stress in heart embryonic H9c2 cardiomyocytes,” 2024.
[26]I. C. Anton, L. Mititelu-Tartau, R. Iliescu, I. L. Serban, M. hancianu, and C. G. Mircea, “Zinc potentiates the antioxidant effect of dapagliflozin in rats with experimental-induced diabetes,” The Medical-Surgical Journal, vol. 127, no. 1, pp. 63-72, 2023.
[27]F. R. Alsereidi, Z. Khashim, H. Marzook, A. M. Al-Rawi, T. Salomon, M. K. Almansoori, M. M. Madkour, A. M. Hamam, M. M. Ramadan, and Q. P. Peterson, “Dapagliflozin mitigates cellular stress and inflammation through PI3K/AKT pathway modulation in cardiomyocytes, aortic endothelial cells, and stem cell-derived β cells,” Cardiovascular diabetology, vol. 23, no. 1, pp. 388, 2024.
[28]E. M. Shihab, H. M. Kadhim, and S. S. Shahooth, “Dapagliflozin mitigates oxidative stress, inflammatory, and histopathological markers of aging in mice,” Journal of Medicine and Life, vol. 17, no. 2, pp. 157, 2024.
[29]L. Fu, Y. Zhou, J. Sun, Z. Zhu, Z. Xing, S. Zhou, Y. Wang, and S. Tai, “Atherogenic index of plasma is associated with major adverse cardiovascular events in patients with type 2 diabetes mellitus,” Cardiovascular diabetology, vol. 20, pp. 1-11, 2021.
[30]M. Packer, C. S. Lam, L. H. Lund, and M. M. Redfield, “Interdependence of atrial fibrillation and heart failure with a preserved ejection fraction reflects a common underlying atrial and ventricular myopathy,” Circulation, vol. 141, no. 1, pp. 4-6, 2020.
[31]M. Eldesoqui, Z. H. Eldken, S. A. Mostafa, R. H. Al-Serwi, M. El-Sherbiny, N. Elsherbiny, Z. M. Mohammedsaleh, and N. H. Sakr, “Exercise augments the effect of SGLT2 inhibitor dapagliflozin on experimentally induced diabetic cardiomyopathy, possible underlying mechanisms,” Metabolites, vol. 12, no. 7, pp. 635, 2022.
[32]A. Batta, “Evaluation of the Diuretics Effects in the Inflammatory and Redox Responses in a Doxorubicin-Induced Ns Model.”vol.6,no.2,pp. 453-45,2024.
Downloads
Published
License
Copyright (c) 2025 University of Thi-Qar Journal of Science

This work is licensed under a Creative Commons Attribution 4.0 International License.











